direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23×D28, C28⋊2C24, D14⋊1C24, C14.3C25, C24.82D14, C7⋊1(D4×C23), (C23×C4)⋊7D7, C4⋊2(C23×D7), (C23×C28)⋊9C2, (D7×C24)⋊4C2, C14⋊1(C22×D4), C2.4(D7×C24), (C2×C28)⋊14C23, (C22×C14)⋊16D4, (C22×C4)⋊45D14, (C22×D7)⋊7C23, (C2×C14).325C24, (C22×C28)⋊61C22, (C23×D7)⋊22C22, C22.53(C23×D7), C23.346(C22×D7), (C22×C14).432C23, (C23×C14).115C22, (C2×C14)⋊12(C2×D4), (C2×C4)⋊11(C22×D7), SmallGroup(448,1367)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 6788 in 1362 conjugacy classes, 543 normal (9 characteristic)
C1, C2, C2 [×14], C2 [×16], C4 [×8], C22 [×35], C22 [×128], C7, C2×C4 [×28], D4 [×64], C23 [×15], C23 [×168], D7 [×16], C14, C14 [×14], C22×C4 [×14], C2×D4 [×112], C24, C24 [×44], C28 [×8], D14 [×16], D14 [×112], C2×C14 [×35], C23×C4, C22×D4 [×28], C25 [×2], D28 [×64], C2×C28 [×28], C22×D7 [×56], C22×D7 [×112], C22×C14 [×15], D4×C23, C2×D28 [×112], C22×C28 [×14], C23×D7 [×28], C23×D7 [×16], C23×C14, C22×D28 [×28], C23×C28, D7×C24 [×2], C23×D28
Quotients:
C1, C2 [×31], C22 [×155], D4 [×8], C23 [×155], D7, C2×D4 [×28], C24 [×31], D14 [×15], C22×D4 [×14], C25, D28 [×8], C22×D7 [×35], D4×C23, C2×D28 [×28], C23×D7 [×15], C22×D28 [×14], D7×C24, C23×D28
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d28=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
(1 184)(2 185)(3 186)(4 187)(5 188)(6 189)(7 190)(8 191)(9 192)(10 193)(11 194)(12 195)(13 196)(14 169)(15 170)(16 171)(17 172)(18 173)(19 174)(20 175)(21 176)(22 177)(23 178)(24 179)(25 180)(26 181)(27 182)(28 183)(29 102)(30 103)(31 104)(32 105)(33 106)(34 107)(35 108)(36 109)(37 110)(38 111)(39 112)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 92)(48 93)(49 94)(50 95)(51 96)(52 97)(53 98)(54 99)(55 100)(56 101)(57 199)(58 200)(59 201)(60 202)(61 203)(62 204)(63 205)(64 206)(65 207)(66 208)(67 209)(68 210)(69 211)(70 212)(71 213)(72 214)(73 215)(74 216)(75 217)(76 218)(77 219)(78 220)(79 221)(80 222)(81 223)(82 224)(83 197)(84 198)(113 159)(114 160)(115 161)(116 162)(117 163)(118 164)(119 165)(120 166)(121 167)(122 168)(123 141)(124 142)(125 143)(126 144)(127 145)(128 146)(129 147)(130 148)(131 149)(132 150)(133 151)(134 152)(135 153)(136 154)(137 155)(138 156)(139 157)(140 158)
(1 123)(2 124)(3 125)(4 126)(5 127)(6 128)(7 129)(8 130)(9 131)(10 132)(11 133)(12 134)(13 135)(14 136)(15 137)(16 138)(17 139)(18 140)(19 113)(20 114)(21 115)(22 116)(23 117)(24 118)(25 119)(26 120)(27 121)(28 122)(29 201)(30 202)(31 203)(32 204)(33 205)(34 206)(35 207)(36 208)(37 209)(38 210)(39 211)(40 212)(41 213)(42 214)(43 215)(44 216)(45 217)(46 218)(47 219)(48 220)(49 221)(50 222)(51 223)(52 224)(53 197)(54 198)(55 199)(56 200)(57 100)(58 101)(59 102)(60 103)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(76 91)(77 92)(78 93)(79 94)(80 95)(81 96)(82 97)(83 98)(84 99)(141 184)(142 185)(143 186)(144 187)(145 188)(146 189)(147 190)(148 191)(149 192)(150 193)(151 194)(152 195)(153 196)(154 169)(155 170)(156 171)(157 172)(158 173)(159 174)(160 175)(161 176)(162 177)(163 178)(164 179)(165 180)(166 181)(167 182)(168 183)
(1 80)(2 81)(3 82)(4 83)(5 84)(6 57)(7 58)(8 59)(9 60)(10 61)(11 62)(12 63)(13 64)(14 65)(15 66)(16 67)(17 68)(18 69)(19 70)(20 71)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 148)(30 149)(31 150)(32 151)(33 152)(34 153)(35 154)(36 155)(37 156)(38 157)(39 158)(40 159)(41 160)(42 161)(43 162)(44 163)(45 164)(46 165)(47 166)(48 167)(49 168)(50 141)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(85 113)(86 114)(87 115)(88 116)(89 117)(90 118)(91 119)(92 120)(93 121)(94 122)(95 123)(96 124)(97 125)(98 126)(99 127)(100 128)(101 129)(102 130)(103 131)(104 132)(105 133)(106 134)(107 135)(108 136)(109 137)(110 138)(111 139)(112 140)(169 207)(170 208)(171 209)(172 210)(173 211)(174 212)(175 213)(176 214)(177 215)(178 216)(179 217)(180 218)(181 219)(182 220)(183 221)(184 222)(185 223)(186 224)(187 197)(188 198)(189 199)(190 200)(191 201)(192 202)(193 203)(194 204)(195 205)(196 206)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 190)(2 189)(3 188)(4 187)(5 186)(6 185)(7 184)(8 183)(9 182)(10 181)(11 180)(12 179)(13 178)(14 177)(15 176)(16 175)(17 174)(18 173)(19 172)(20 171)(21 170)(22 169)(23 196)(24 195)(25 194)(26 193)(27 192)(28 191)(29 94)(30 93)(31 92)(32 91)(33 90)(34 89)(35 88)(36 87)(37 86)(38 85)(39 112)(40 111)(41 110)(42 109)(43 108)(44 107)(45 106)(46 105)(47 104)(48 103)(49 102)(50 101)(51 100)(52 99)(53 98)(54 97)(55 96)(56 95)(57 223)(58 222)(59 221)(60 220)(61 219)(62 218)(63 217)(64 216)(65 215)(66 214)(67 213)(68 212)(69 211)(70 210)(71 209)(72 208)(73 207)(74 206)(75 205)(76 204)(77 203)(78 202)(79 201)(80 200)(81 199)(82 198)(83 197)(84 224)(113 157)(114 156)(115 155)(116 154)(117 153)(118 152)(119 151)(120 150)(121 149)(122 148)(123 147)(124 146)(125 145)(126 144)(127 143)(128 142)(129 141)(130 168)(131 167)(132 166)(133 165)(134 164)(135 163)(136 162)(137 161)(138 160)(139 159)(140 158)
G:=sub<Sym(224)| (1,184)(2,185)(3,186)(4,187)(5,188)(6,189)(7,190)(8,191)(9,192)(10,193)(11,194)(12,195)(13,196)(14,169)(15,170)(16,171)(17,172)(18,173)(19,174)(20,175)(21,176)(22,177)(23,178)(24,179)(25,180)(26,181)(27,182)(28,183)(29,102)(30,103)(31,104)(32,105)(33,106)(34,107)(35,108)(36,109)(37,110)(38,111)(39,112)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,101)(57,199)(58,200)(59,201)(60,202)(61,203)(62,204)(63,205)(64,206)(65,207)(66,208)(67,209)(68,210)(69,211)(70,212)(71,213)(72,214)(73,215)(74,216)(75,217)(76,218)(77,219)(78,220)(79,221)(80,222)(81,223)(82,224)(83,197)(84,198)(113,159)(114,160)(115,161)(116,162)(117,163)(118,164)(119,165)(120,166)(121,167)(122,168)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,121)(28,122)(29,201)(30,202)(31,203)(32,204)(33,205)(34,206)(35,207)(36,208)(37,209)(38,210)(39,211)(40,212)(41,213)(42,214)(43,215)(44,216)(45,217)(46,218)(47,219)(48,220)(49,221)(50,222)(51,223)(52,224)(53,197)(54,198)(55,199)(56,200)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(141,184)(142,185)(143,186)(144,187)(145,188)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,169)(155,170)(156,171)(157,172)(158,173)(159,174)(160,175)(161,176)(162,177)(163,178)(164,179)(165,180)(166,181)(167,182)(168,183), (1,80)(2,81)(3,82)(4,83)(5,84)(6,57)(7,58)(8,59)(9,60)(10,61)(11,62)(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,70)(20,71)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(41,160)(42,161)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,141)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(169,207)(170,208)(171,209)(172,210)(173,211)(174,212)(175,213)(176,214)(177,215)(178,216)(179,217)(180,218)(181,219)(182,220)(183,221)(184,222)(185,223)(186,224)(187,197)(188,198)(189,199)(190,200)(191,201)(192,202)(193,203)(194,204)(195,205)(196,206), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,190)(2,189)(3,188)(4,187)(5,186)(6,185)(7,184)(8,183)(9,182)(10,181)(11,180)(12,179)(13,178)(14,177)(15,176)(16,175)(17,174)(18,173)(19,172)(20,171)(21,170)(22,169)(23,196)(24,195)(25,194)(26,193)(27,192)(28,191)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,112)(40,111)(41,110)(42,109)(43,108)(44,107)(45,106)(46,105)(47,104)(48,103)(49,102)(50,101)(51,100)(52,99)(53,98)(54,97)(55,96)(56,95)(57,223)(58,222)(59,221)(60,220)(61,219)(62,218)(63,217)(64,216)(65,215)(66,214)(67,213)(68,212)(69,211)(70,210)(71,209)(72,208)(73,207)(74,206)(75,205)(76,204)(77,203)(78,202)(79,201)(80,200)(81,199)(82,198)(83,197)(84,224)(113,157)(114,156)(115,155)(116,154)(117,153)(118,152)(119,151)(120,150)(121,149)(122,148)(123,147)(124,146)(125,145)(126,144)(127,143)(128,142)(129,141)(130,168)(131,167)(132,166)(133,165)(134,164)(135,163)(136,162)(137,161)(138,160)(139,159)(140,158)>;
G:=Group( (1,184)(2,185)(3,186)(4,187)(5,188)(6,189)(7,190)(8,191)(9,192)(10,193)(11,194)(12,195)(13,196)(14,169)(15,170)(16,171)(17,172)(18,173)(19,174)(20,175)(21,176)(22,177)(23,178)(24,179)(25,180)(26,181)(27,182)(28,183)(29,102)(30,103)(31,104)(32,105)(33,106)(34,107)(35,108)(36,109)(37,110)(38,111)(39,112)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,92)(48,93)(49,94)(50,95)(51,96)(52,97)(53,98)(54,99)(55,100)(56,101)(57,199)(58,200)(59,201)(60,202)(61,203)(62,204)(63,205)(64,206)(65,207)(66,208)(67,209)(68,210)(69,211)(70,212)(71,213)(72,214)(73,215)(74,216)(75,217)(76,218)(77,219)(78,220)(79,221)(80,222)(81,223)(82,224)(83,197)(84,198)(113,159)(114,160)(115,161)(116,162)(117,163)(118,164)(119,165)(120,166)(121,167)(122,168)(123,141)(124,142)(125,143)(126,144)(127,145)(128,146)(129,147)(130,148)(131,149)(132,150)(133,151)(134,152)(135,153)(136,154)(137,155)(138,156)(139,157)(140,158), (1,123)(2,124)(3,125)(4,126)(5,127)(6,128)(7,129)(8,130)(9,131)(10,132)(11,133)(12,134)(13,135)(14,136)(15,137)(16,138)(17,139)(18,140)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,121)(28,122)(29,201)(30,202)(31,203)(32,204)(33,205)(34,206)(35,207)(36,208)(37,209)(38,210)(39,211)(40,212)(41,213)(42,214)(43,215)(44,216)(45,217)(46,218)(47,219)(48,220)(49,221)(50,222)(51,223)(52,224)(53,197)(54,198)(55,199)(56,200)(57,100)(58,101)(59,102)(60,103)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(76,91)(77,92)(78,93)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(141,184)(142,185)(143,186)(144,187)(145,188)(146,189)(147,190)(148,191)(149,192)(150,193)(151,194)(152,195)(153,196)(154,169)(155,170)(156,171)(157,172)(158,173)(159,174)(160,175)(161,176)(162,177)(163,178)(164,179)(165,180)(166,181)(167,182)(168,183), (1,80)(2,81)(3,82)(4,83)(5,84)(6,57)(7,58)(8,59)(9,60)(10,61)(11,62)(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,69)(19,70)(20,71)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(41,160)(42,161)(43,162)(44,163)(45,164)(46,165)(47,166)(48,167)(49,168)(50,141)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(85,113)(86,114)(87,115)(88,116)(89,117)(90,118)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,127)(100,128)(101,129)(102,130)(103,131)(104,132)(105,133)(106,134)(107,135)(108,136)(109,137)(110,138)(111,139)(112,140)(169,207)(170,208)(171,209)(172,210)(173,211)(174,212)(175,213)(176,214)(177,215)(178,216)(179,217)(180,218)(181,219)(182,220)(183,221)(184,222)(185,223)(186,224)(187,197)(188,198)(189,199)(190,200)(191,201)(192,202)(193,203)(194,204)(195,205)(196,206), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,190)(2,189)(3,188)(4,187)(5,186)(6,185)(7,184)(8,183)(9,182)(10,181)(11,180)(12,179)(13,178)(14,177)(15,176)(16,175)(17,174)(18,173)(19,172)(20,171)(21,170)(22,169)(23,196)(24,195)(25,194)(26,193)(27,192)(28,191)(29,94)(30,93)(31,92)(32,91)(33,90)(34,89)(35,88)(36,87)(37,86)(38,85)(39,112)(40,111)(41,110)(42,109)(43,108)(44,107)(45,106)(46,105)(47,104)(48,103)(49,102)(50,101)(51,100)(52,99)(53,98)(54,97)(55,96)(56,95)(57,223)(58,222)(59,221)(60,220)(61,219)(62,218)(63,217)(64,216)(65,215)(66,214)(67,213)(68,212)(69,211)(70,210)(71,209)(72,208)(73,207)(74,206)(75,205)(76,204)(77,203)(78,202)(79,201)(80,200)(81,199)(82,198)(83,197)(84,224)(113,157)(114,156)(115,155)(116,154)(117,153)(118,152)(119,151)(120,150)(121,149)(122,148)(123,147)(124,146)(125,145)(126,144)(127,143)(128,142)(129,141)(130,168)(131,167)(132,166)(133,165)(134,164)(135,163)(136,162)(137,161)(138,160)(139,159)(140,158) );
G=PermutationGroup([(1,184),(2,185),(3,186),(4,187),(5,188),(6,189),(7,190),(8,191),(9,192),(10,193),(11,194),(12,195),(13,196),(14,169),(15,170),(16,171),(17,172),(18,173),(19,174),(20,175),(21,176),(22,177),(23,178),(24,179),(25,180),(26,181),(27,182),(28,183),(29,102),(30,103),(31,104),(32,105),(33,106),(34,107),(35,108),(36,109),(37,110),(38,111),(39,112),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,92),(48,93),(49,94),(50,95),(51,96),(52,97),(53,98),(54,99),(55,100),(56,101),(57,199),(58,200),(59,201),(60,202),(61,203),(62,204),(63,205),(64,206),(65,207),(66,208),(67,209),(68,210),(69,211),(70,212),(71,213),(72,214),(73,215),(74,216),(75,217),(76,218),(77,219),(78,220),(79,221),(80,222),(81,223),(82,224),(83,197),(84,198),(113,159),(114,160),(115,161),(116,162),(117,163),(118,164),(119,165),(120,166),(121,167),(122,168),(123,141),(124,142),(125,143),(126,144),(127,145),(128,146),(129,147),(130,148),(131,149),(132,150),(133,151),(134,152),(135,153),(136,154),(137,155),(138,156),(139,157),(140,158)], [(1,123),(2,124),(3,125),(4,126),(5,127),(6,128),(7,129),(8,130),(9,131),(10,132),(11,133),(12,134),(13,135),(14,136),(15,137),(16,138),(17,139),(18,140),(19,113),(20,114),(21,115),(22,116),(23,117),(24,118),(25,119),(26,120),(27,121),(28,122),(29,201),(30,202),(31,203),(32,204),(33,205),(34,206),(35,207),(36,208),(37,209),(38,210),(39,211),(40,212),(41,213),(42,214),(43,215),(44,216),(45,217),(46,218),(47,219),(48,220),(49,221),(50,222),(51,223),(52,224),(53,197),(54,198),(55,199),(56,200),(57,100),(58,101),(59,102),(60,103),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(76,91),(77,92),(78,93),(79,94),(80,95),(81,96),(82,97),(83,98),(84,99),(141,184),(142,185),(143,186),(144,187),(145,188),(146,189),(147,190),(148,191),(149,192),(150,193),(151,194),(152,195),(153,196),(154,169),(155,170),(156,171),(157,172),(158,173),(159,174),(160,175),(161,176),(162,177),(163,178),(164,179),(165,180),(166,181),(167,182),(168,183)], [(1,80),(2,81),(3,82),(4,83),(5,84),(6,57),(7,58),(8,59),(9,60),(10,61),(11,62),(12,63),(13,64),(14,65),(15,66),(16,67),(17,68),(18,69),(19,70),(20,71),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,148),(30,149),(31,150),(32,151),(33,152),(34,153),(35,154),(36,155),(37,156),(38,157),(39,158),(40,159),(41,160),(42,161),(43,162),(44,163),(45,164),(46,165),(47,166),(48,167),(49,168),(50,141),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(85,113),(86,114),(87,115),(88,116),(89,117),(90,118),(91,119),(92,120),(93,121),(94,122),(95,123),(96,124),(97,125),(98,126),(99,127),(100,128),(101,129),(102,130),(103,131),(104,132),(105,133),(106,134),(107,135),(108,136),(109,137),(110,138),(111,139),(112,140),(169,207),(170,208),(171,209),(172,210),(173,211),(174,212),(175,213),(176,214),(177,215),(178,216),(179,217),(180,218),(181,219),(182,220),(183,221),(184,222),(185,223),(186,224),(187,197),(188,198),(189,199),(190,200),(191,201),(192,202),(193,203),(194,204),(195,205),(196,206)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,190),(2,189),(3,188),(4,187),(5,186),(6,185),(7,184),(8,183),(9,182),(10,181),(11,180),(12,179),(13,178),(14,177),(15,176),(16,175),(17,174),(18,173),(19,172),(20,171),(21,170),(22,169),(23,196),(24,195),(25,194),(26,193),(27,192),(28,191),(29,94),(30,93),(31,92),(32,91),(33,90),(34,89),(35,88),(36,87),(37,86),(38,85),(39,112),(40,111),(41,110),(42,109),(43,108),(44,107),(45,106),(46,105),(47,104),(48,103),(49,102),(50,101),(51,100),(52,99),(53,98),(54,97),(55,96),(56,95),(57,223),(58,222),(59,221),(60,220),(61,219),(62,218),(63,217),(64,216),(65,215),(66,214),(67,213),(68,212),(69,211),(70,210),(71,209),(72,208),(73,207),(74,206),(75,205),(76,204),(77,203),(78,202),(79,201),(80,200),(81,199),(82,198),(83,197),(84,224),(113,157),(114,156),(115,155),(116,154),(117,153),(118,152),(119,151),(120,150),(121,149),(122,148),(123,147),(124,146),(125,145),(126,144),(127,143),(128,142),(129,141),(130,168),(131,167),(132,166),(133,165),(134,164),(135,163),(136,162),(137,161),(138,160),(139,159),(140,158)])
Matrix representation ►G ⊆ GL5(𝔽29)
28 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 22 |
0 | 0 | 0 | 24 | 9 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 25 |
0 | 0 | 0 | 7 | 0 |
G:=sub<GL(5,GF(29))| [28,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,28],[1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,24,0,0,0,22,9],[1,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,25,0] >;
136 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4H | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 14 | ··· | 14 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
136 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D7 | D14 | D14 | D28 |
kernel | C23×D28 | C22×D28 | C23×C28 | D7×C24 | C22×C14 | C23×C4 | C22×C4 | C24 | C23 |
# reps | 1 | 28 | 1 | 2 | 8 | 3 | 42 | 3 | 48 |
In GAP, Magma, Sage, TeX
C_2^3\times D_{28}
% in TeX
G:=Group("C2^3xD28");
// GroupNames label
G:=SmallGroup(448,1367);
// by ID
G=gap.SmallGroup(448,1367);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,1684,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^28=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations